Mean values of long Dirichlet polynomials with higher divisor coefficients

نویسندگان

چکیده

In this article, we prove an asymptotic formula for mean values of long Dirichlet polynomials with higher order shifted divisor functions, assuming a smoothed additive conjecture functions. As consequence work, special cases conjectures Conrey-Keating [8] on functions as coefficients.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Mean Values of Dirichlet Polynomials

We show the following general lower bound valid for any positive integer q, and arbitrary reals φ1, . . . , φN and non-negative reals a1, . . . , aN , cq ( N ∑ n=1 a 2 n )q ≤ 1 2T ∫

متن کامل

Mean value theorems for long Dirichlet polynomials and tails of Dirichlet series

We obtain formulas for computing mean values of Dirichlet polynomials that have more terms than the length of the integration range. These formulas allow one to compute the contribution of off-diagonal terms provided one knows the correlation functions for the coefficients of the Dirichlet polynomials. A smooth weight is used to control error terms, and this weight can in typical applications b...

متن کامل

On the Supremum of Random Dirichlet Polynomials with Multiplicative Coefficients

We study the average supremum of some random Dirichlet polynomials DN (t) = ∑ N n=1 εnd(n)n , where (εn) is a sequence of independent Rademacher random variables, the weights (d(n)) satisfy some reasonable conditions and 0 ≤ σ ≤ 1/2. We use an approach based on methods of stochastic processes, in particular the metric entropy method developed in [8].

متن کامل

Supremum of Random Dirichlet Polynomials with Sub-multiplicative Coefficients

We study the supremum of random Dirichlet polynomials DN (t) = ∑ N n=1 εnd(n)n , where (εn) is a sequence of independent Rademacher random variables, and d is a sub-multiplicative function. The approach is gaussian and entirely based on comparison properties of Gaussian processes, with no use of the metric entropy method.

متن کامل

Values of coefficients of cyclotomic polynomials II

Let a(n, k) be the kth coefficient of the nth cyclotomic polynomial. In part I it was proved that {a(mn, k) | n ≥ 1, k ≥ 0} = Z, in case m is a prime power. In this paper we show that the result also holds true in case m is an arbitrary positive integer.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Advances in Mathematics

سال: 2022

ISSN: ['1857-8365', '1857-8438']

DOI: https://doi.org/10.1016/j.aim.2022.108759